Characterization of 4-HNE Modified L-FABP Reveals Alterations in Structural and Functional Dynamics

نویسندگان

  • Rebecca L. Smathers
  • Kristofer S. Fritz
  • James J. Galligan
  • Colin T. Shearn
  • Philip Reigan
  • Michael J. Marks
  • Dennis R. Petersen
چکیده

4-Hydroxynonenal (4-HNE) is a reactive α,β-unsaturated aldehyde produced during oxidative stress and subsequent lipid peroxidation of polyunsaturated fatty acids. The reactivity of 4-HNE towards DNA and nucleophilic amino acids has been well established. In this report, using proteomic approaches, liver fatty acid-binding protein (L-FABP) is identified as a target for modification by 4-HNE. This lipid binding protein mediates the uptake and trafficking of hydrophobic ligands throughout cellular compartments. Ethanol caused a significant decrease in L-FABP protein (P<0.001) and mRNA (P<0.05), as well as increased poly-ubiquitinated L-FABP (P<0.001). Sites of 4-HNE adduction on mouse recombinant L-FABP were mapped using MALDI-TOF/TOF mass spectrometry on apo (Lys57 and Cys69) and holo (Lys6, Lys31, His43, Lys46, Lys57 and Cys69) L-FABP. The impact of 4-HNE adduction was found to occur in a concentration-dependent manner; affinity for the fluorescent ligand, anilinonaphthalene-8-sulfonic acid, was reduced from 0.347 µM to Kd(1) = 0.395 µM and Kd(2) = 34.20 µM. Saturation analyses revealed that capacity for ligand is reduced by approximately 50% when adducted by 4-HNE. Thermal stability curves of apo L-FABP was also found to be significantly affected by 4-HNE adduction (ΔTm = 5.44°C, P<0.01). Computational-based molecular modeling simulations of adducted protein revealed minor conformational changes in global protein structure of apo and holo L-FABP while more apparent differences were observed within the internal binding pocket, revealing reduced area and structural integrity. New solvent accessible portals on the periphery of the protein were observed following 4-HNE modification in both the apo and holo state, suggesting an adaptive response to carbonylation. The results from this study detail the dynamic process associated with L-FABP modification by 4-HNE and provide insight as to how alterations in structural integrity and ligand binding may a contributing factor in the pathogenesis of ALD.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Susceptibility of L-FABP-/- mice to oxidative stress in early-stage alcoholic liver.

Chronic ethanol consumption is a prominent cause of liver disease worldwide. Dysregulation of an important lipid uptake and trafficking gene, liver-fatty acid binding protein (L-FABP), may contribute to alterations in lipid homeostasis during early-stage alcoholic liver. We have reported the detrimental effects of ethanol on the expression of L-FABP and hypothesize this may deleteriously impact...

متن کامل

Studies on epitopes on low-density lipoprotein modified by 4-hydroxynonenal. Biochemical characterization and determination.

Oxidation of human low-density lipoprotein (LDL) was found to be accompanied by the generation of various reactive aldehydes. One of them, 4-hydroxynonenal (HNE), was shown to modify LDL to a form which represents a good model of oxidized LDL (ox-LDL). In order to investigate the epitopes newly formed on HNE-modified LDL, a polyvalent antiserum to HNE-LDL [anti-(HNE-LDL)] was raised in rabbits ...

متن کامل

Effects of feed restriction and dietary fat type on mRNA expression of liver fatty acid-binding protein (L-FABP) in broilers

Background: Liver fatty acid-binding protein (L-FABP) is the main cytosolic binding site for long chain fatty acids in hepatocytes. FABPs enhance the uptake of fatty acids into the cell by increasing their concentration due to decreasing concentration of unbound fatty acids inside the cell. Objectives: The aim of this study was to evaluate the effects of dietary unsaturated to saturated fatty a...

متن کامل

Structure-activity relationships for growth inhibition and induction of apoptosis by 4-hydroxy-2-nonenal in raw 264.7 cells.

4-Hydroxy-2-nonenal (HNE) is a highly reactive lipid aldehyde byproduct of the peroxidation of cellular membranes. The structure of HNE features three functional groups, a C1 aldehyde, a C2==C3 double bond, and a C4- hydroxyl group, each of which may contribute to the toxicity of the compound. In addition, the length of the aliphatic chain may influence toxic potency by altering lipophilicity. ...

متن کامل

Immunoaffinity purification and characterization of 4-hydroxy-2-nonenal- and malondialdehyde-modified peptides by electrospray ionization tandem mass spectrometry.

Two methods based on specific immunoaffinity enrichment followed by electrospray ionization (ESI) mass spectrometry (MS) have been developed for the specific analysis of 4-hydroxy-2-nonenal (HNE)- and malondialdehyde (MDA)-modified proteins (Michael and Schiff base adducts, respectively). Anti-HNE antibodies were immobilized on CNBr-activated sepharose, and the immunosorbent produced was used f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2012